
Final exam — Analysis (WPMA14004)

Thursday 18 June 2015, 9.00h–12.00h

University of Groningen

Instructions

1. The use of calculators, books, or notes is not allowed.

2. Provide clear arguments for all your answers: only answering “yes”, “no”, or “42”
is not sufficient. You may use all theorems and statements in the book, but you
should clearly indicate which of them you are using.

3. The total score for all questions equals 90. If p is the number of marks then the
exam grade is G = 1 + p/10.

Problem 1 (3 + 12 points)

(a) State the Axiom of Completeness.

(b) Assume that A ⊂ R is nonempty and bounded below. Consider the set

B = {b ∈ R : b is a lower bound for A}.

Prove that B is bounded above and inf A = supB.

Problem 2 (5 + 3 + 7 points)

Consider the sequence (sn) given by

sn =
1

n+ 1
+

1

n + 2
+ · · ·+

1

n+ n
.

Prove the following statements:

(a) sn+1 − sn > 0 for all n ∈ N.

(b) sn ≤
n

n+ 1
for all n ∈ N.

(c) s = lim sn exists and 1

2
≤ s ≤ 1.

Problem 3 (15 points)

Assume that (an) is a convergent sequence and a = lim an. Consider the set

K = {an : n ∈ N} ∪ {a}.

Prove that K is compact.
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Problem 4 (9 + 6 points)

Let f : R → R be differentiable. Assume that there exists a number M > 0 such that
|f ′(x)| ≤ M for all x ∈ R.

(a) Prove that f is uniformly continuous on R.

(b) Define g : R → R by g(x) = |f(x)|. Prove that g is uniformly continuous on R.

Problem 5 (4 + 4 + 7 points)

Consider the sequence fn(x) = (4x(1− x))n on A = [0, 1].

(a) Compute the pointwise limit of (fn). Hint: first draw the graph of f1.

(b) Does (fn) converge uniformly on A?

(c) Let |c| < 1. Prove that
∞
∑

n=1

cnfn(x) converges uniformly on A and compute the limit.

Problem 6 (3 + 6 + 3 + 3 points)

Consider the function f : [0, 2] → R defined by

f(x) =

{

0 if x = 1/p for some p ∈ N

1 otherwise.

(a) Show that U(f, P ) = 2 for any partition P of [0, 2].

(b) Prove that for all ǫ > 0 there exists a partition Pǫ of [0, 2] such that L(f, Pǫ) > 2−2ǫ.

Hint: describe such a partition in words, rather than giving an explicit formula.

(c) Prove that f is Riemann-integrable on [0, 2] and compute
∫

2

0
f .

(d) Does there exist a function F : [0, 2] → R such that F ′(x) = f(x) for all x ∈ [0, 2]?

End of test (90 points)
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Solution of Problem 1 (3 + 12 points)

(a) Axiom of Completeness: every nonempty set of real numbers that is bounded above
has a least upper bound.
(3 points)

(b) If b ∈ B, then b ≤ a for all a ∈ A. Therefore, every a ∈ A serves as an upper bound
for B, which shows that B is bounded above. Also note that B is nonempty since A
is bounded below. By the Axiom of completeness supB exists.
(4 points)

Since supB is the least upper bound of B and every a ∈ A is an upper bound for B
it follows that supB ≤ a for all a ∈ A. This shows that supB is a lower bound for A.
(4 points)

Now let ℓ be an arbitrary lower bound of A. Then ℓ ∈ B by definition of the set B.
But then ℓ ≤ supB. This proves that supB is also the greatest lower bound of A.
We conclude that inf A = supB.
(4 points)

Solution of Problem 2 (5 + 4 + 7 points)

(a) By definition we have

sn =
1

n + 1
+

1

n+ 2
+ · · ·+

1

n+ n
(n terms),

sn+1 =
1

n + 2
+

1

n+ 3
+ · · ·+

1

n+ 1 + n + 1
(n+ 1 terms).

Note that sn and sn+1 have n− 1 terms in common. Therefore, we obtain

sn+1 − sn =
1

2n+ 2
+

1

2n+ 1
−

1

n+ 1
=

1

2n+ 1
−

1

2n+ 2
> 0.

(5 points)

(b) We have

sn =
1

n + 1
+

1

n+ 2
+ · · ·+

1

n + n
≤

1

n+ 1
+

1

n+ 1
+ · · ·+

1

n + 1
=

n

n+ 1
.

(3 points)

(c) From part (a) it follows that sn < sn+1 for all n ∈ N, which means that (sn) is
increasing. From part (b) it follows that sn < 1 for all n ∈ N, which means that (sn)
is bounded above. Now apply the Monotone Convergence Theorem: every increasing
sequence that is bounded above is convergent. We conclude that s = lim sn exists.
(4 points)

Since s1 ≤ sn ≤ 1 for all n ∈ N and s1 = 1

2
it follows by the Order Limit Theorem

that 1

2
≤ s ≤ 1.

(3 points)

Solution of Problem 3 (15 points)

This problem has (at least) three different solutions.
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Solution 1 (via open covers). To prove that K is compact we need to show that any
open cover {Oi : i ∈ I} for K has a finite subcover.
(2 points)

Since a ∈ K there exists i0 ∈ I such that a ∈ Oi0 . Since Oi0 is open there exists a number
ǫ > 0 such that Vǫ(a) ⊂ Oi0 .
(3 points)

Because lim an = a there exists a number N ∈ N such that

n ≥ N ⇒ |an − a| < ǫ ⇒ an ∈ Vǫ(a).

This proves that an ∈ Oi0 for all n ≥ N .
(5 points)

Since a1, . . . , aN−1 ∈ K we can pick indices i1, . . . , iN−1 ∈ I such that ak ∈ Oik for all
k = 1, . . . , N − 1. We conclude that the collection {Oi0, Oi1, . . . , OiN−1

} forms a finite
subcover for K.
(5 points)

Solution 2 (via the Heine–Borel Theorem). To prove that K is compact we need
to show that K is closed and bounded.
(2 points)

The sequence (an) is convergent and therefore bounded. Hence, there exists a number
M > 0 such that |an| ≤ M for all n ∈ N. By the Order Limit Theorem it also follows
that |a| ≤ M . Therefore, |x| ≤ M for all x ∈ K, which shows that K is a bounded set.
(4 points)

To prove that K is closed we need to show that any Cauchy sequence K has a limit which
is also contained in K. Let (xn) ⊂ K be Cauchy, then x = lim xn exists. We need to
prove that x ∈ K. The difficulty here is that (xn) need not be a subsequence of (an)! We
need to distinguish between three cases.

1. Assume that xn = a for infinitely many n ∈ N. Then we can construct a subsequence
(xnk

) such that xnk
= a for all k ∈ N. Hence, x = lim xn = lim xnk

= a ∈ K and we
are done.
(3 points)

2. Assume that there exists j ∈ N such that xn = aj for infinitely many n ∈ N. Then
we can construct a subsequence (xnk

) such that xnk
= aj for all k ∈ N. Hence,

x = lim xn = lim xnk
= aj ∈ K and we are done.

(3 points)

3. If the previous cases do not apply, then infinitely many terms of (an) appear in the
sequence (xn). This means that there exists a subsequence (xnk

) which, in turn, is
a subsequence of (an). Hence, x = lim xnk

= a ∈ K and we are done.
(3 points)

Solution 3 (via the definition). To prove that K is compact we need to show that
every sequence in K has a convergent subsequence with a limit in K.
(3 points)

Let (xn) ⊂ K be any sequence. To produce a convergent subsequence (xnk
) with a limit

in K we can proceed exactly as in Solution 2.
(4 points for each case)
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Solution of Problem 4 (9 + 6 points)

(a) Let x, y ∈ R satisfy x < y. Recall the Mean Value Theorem: since f is differentiable
on (x, y) and continuous on [x, y] there exists a point z ∈ (x, y) such that

f(x)− f(y) = f ′(z)(x− y).

(3 points)

Taking absolute values gives

|f(x)− f(y)| = |f ′(z)||x− y| ≤ M |x− y|.

Note that this inequality continues to hold in the case x ≥ y. Therefore, it holds for
all x, y ∈ R.
(3 points)

Take any number ǫ > 0 and let δ = ǫ/M , then

|x− y| < δ ⇒ |f(x)− f(y)| ≤ M |x− y| < Mδ = ǫ.

Since x, y ∈ R are arbitrary, it follows that f is uniformly continuous on R.
(3 points)

(b) The reverse triangle inequality implies that

∣

∣g(x)− g(y)
∣

∣ =
∣

∣|f(x)| − |f(y)|
∣

∣ ≤ |f(x)− f(y)|.

(3 points)

Let ǫ > 0 be arbitrary and take δ > 0 such that

|x− y| < δ ⇒ |f(x)− f(y)| < ǫ ⇒ |g(x)− g(y)| < ǫ,

which proves that also g is uniformly continuous on R.
(3 points)

Solution of Problem 5 (4 + 4 + 7 points)

(a) Note that fn = fn
1 and f1 is just a quadratic function. We have that f1(

1

2
) = 1 and

0 ≤ f1(x) < 1 for all x ∈ [0, 1
2
) ∪ (1

2
, 1]. Therefore,

f(x) = lim fn(x) =

{

1 if x = 1

2

0 if x 6= 1

2

(4 points)

(b) Since fn is a polynomial it is a continuous function. If fn → f uniformly on [0, 1]
then f would be continuous on [0, 1]. However, f has a jump discontinuity at x = 1

2
.

We conclude that (fn) does not converge uniformly to f .
(4 points)

(c) For x ∈ [0, 1] we have

|cnfn(x)| = |cn(4x(1− x))n| = |c|n|4x(1− x)|n ≤ |c|n
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Since |c| < 1 we can apply the Weierstrass M-test with Mn = |c|n:

∞
∑

n=1

Mn converges ⇒

∞
∑

n=1

cnfn(x) converges uniformly on [0, 1].

(4 points)

To compute the limit we use the geometric series with r = 4cx(1− x):

∞
∑

n=1

cnfn(x) =

∞
∑

n=1

(4cx(1− x))n =
1

1− 4cx(1− x)
− 1 =

4cx(1− x)

1− 4cx(1− x)
.

(3 points)

Solution of Problem 6 (3 + 6 + 3 + 3 points)

(a) Let P be any partition of [0, 2]. Every subinterval [xk−1, xk] of P contains a point
different from points of the form 1/p with p ∈ N. Therefore,

Mk = sup{f(x) : x ∈ [xk−1, xk]} = 1

for all k = 1, . . . , n, where n is the number of intervals in P . This shows that

U(f, P ) =
n

∑

k=1

Mk(xk − xk−1) =
n

∑

k=1

(xk − xk−1) = xn − x0 = 2− 0 = 2.

(3 points)

(b) Let ǫ > 0 be arbitrary. Take [0, ǫ] as the first subinterval of Pǫ. In that interval the
infimum of f is 0. Note that the number of points of the form 1/p with p ∈ N outside
[0, ǫ] is finite: there are at most 1/ǫ many of such points. Around those points we
take intervals of length less than ǫ2. In these intervals the infimum of f is also 0. In
all other intervals the infimum is 1.
(3 points)

This means that the total length of all intervals in which the infimum of f is 0 is at
most ǫ+ ǫ2 · (1/ǫ) = 2ǫ. Therefore,

L(f, Pǫ) = total length of all intervals in which inf f = 1

= 2− total length of all intervals in which inf f = 0

> 2− 2ǫ

(3 points)

(c) Let ǫ > 0 be arbitrary and take a partition Pǫ of [0, 2] such that L(f, Pǫ) > 2 − 2ǫ.
By part (a) it follows that U(f, Pǫ) = 2. Therefore,

U(f, Pǫ)− L(f, Pǫ) < 2− (2− 2ǫ) = 2ǫ,

which proves that f is integrable on [0, 2].
(1 point)

By definition of the Riemann integral and part (a) we have
∫

2

0

f = U(f) = inf
{

U(f, P ) : P is a partition of [0, 2]
}

= 2.

(2 points)
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(d) If there exists a function F : [0, 2] → R such that F ′(x) = f(x) for all x ∈ [0, 2] then
Darboux’s Theorem implies that f attains all values between 0 and 1, which is clearly
not the case. Therefore, we conclude that no such F exists.
(3 points)
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